Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats?

Sonja Amoser, Friedrich Ladich

Several groups of fishes, among them two thirds of all freshwater fishes, have developed hearing specializations that enhance auditory sensitivity and broaden frequency ranges compared with hearing non-specialists (generalists), which lack such adaptations. It has been speculated that the enhanced sensitivities of these so-called hearing specialists have evolved in quiet habitats such as lakes, backwaters of rivers, slowly flowing streams or the deep sea. To test this hypothesis, noise levels and frequency spectra of four different freshwater habitats near Vienna, Austria (Danube River, Triesting stream, Lake Neusiedl, backwaters of the Danube River), were recorded and played back to native fish species while simultaneously measuring their auditory thresholds using the auditory evoked potential (AEP) recording technique. As a representative of hearing specialists, we chose the common carp (Cyprinus carpio, Cyprinidae) and for the hearing generalists the European perch (Perca fluviatilis, Percidae). Data show that the carp's hearing is only moderately masked by the quiet habitat noise level of standing waters (mean threshold shift 9 dB) but is heavily affected by stream and river noise by up to 49 dB in its best hearing range (0.5-1.0 kHz). In contrast, the perch's hearing thresholds were only slightly affected (mean up to 12 dB, at 0.1 kHz) by the highest noise levels presented. Our results indicate that hearing abilities of specialists such as carp are well adapted to the lowest noise levels encountered in freshwater habitats and that their hearing is considerably masked in some parts of their distribution range. Hearing in non-specialists such as perch, on the other hand, is only slightly or not at all impaired in all habitats.

Journal of Experimental Biology
No. of pages
Publication date
Peer reviewed
Austrian Fields of Science 2012
1060 Biology
Portal url